



## Overview of GLM Data (Level-0 through Level-2+) and False Alarm Mitigation

### DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the National Oceanic and Atmospheric Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration.

© 2018 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Peter Armstrong MIT/Lincoln Laboratory 2018-09-11



# Geostationary Lightning Mapper

- Detection System
  - Instrument produced by LMATC (Palo Alto, CA)
    - Instrument senses near-IR emissions from excited oxygen atoms in spectral band  $\lambda$  = 777.4 nm produced by lightning
    - If signal is greater than a threshold, send signal to Ground System (GS) for further processing
  - Process signals to determine whether signal is "true" (= lightning) or "false" based on ground processing algorithm (GPA) provided by instrument vendor and implemented by GS
  - Cluster "true" signal (events) into groups and flashes using lightning cluster filter algorithm provided by algorithm working group (LCFA) and implemented by GS
  - Distribute lightning data product to the public
- System Requirements
  - Flash Detection Efficiency: greater than 70% total flash detection in 24-hr period
  - False Alarm Rate: less than 5% false alarms (flashes) in 24-hr period
  - Dynamic Range: greater than 100:1 at all times
  - Location Accuracy: within 5 km (3σ) at nadir



### GLM L2+ Data Products 2018-08-10 00:00:00 through 23:59:40

- Data product files generated by Ground Segment
- All available files contained data
- Spikes produced by blooming pixels due to solar glint
  - Spikes at ~ 14:40 and ~ 16:05
- Flash exceedances (35 spikes):
  - Total time = 00:32:00
  - Approximate FAR < 1%</li>
  - FAR approximated by deviations to running average
- Three periods with no product files (< 2min)
  - Low number of products follow product outage

#### False alarm met for this 24-hr period







### GLM L2+ Data Products 2018-01-11 00:00:00 through 23:59:40

- Data product files generated by Ground Segment
- All available files contained data
- Extended sunrise solar glint period (07:20 – 09:10 UTC)
  - Flash exceedances (53 spikes):
  - Total time = 01:03:40
  - Running average approximates FAR < 1%</li>
- Small changes in flash rate caused FAR code to underestimate false alarms
  - Investigate this glint period using GLM Levelzero (L0) data and local copy of GPA
  - Test blooming filter created by instrument vendor
- One (1) period with no product files
  - Amount of time: 00:00:20
  - Low number of products follow the product outage

#### False alarm not met for this 24-hr period





### GLM L0 Events 2018-01-11 07:00 – 10:00 UTC



GLM raw events at input to ground processing algorithm (blue)





## GLM LO/L2+ Events 2018-01-11 07:00 – 10:00 UTC



- GLM raw events at input to ground processing algorithm (blue)
- GLM lightning events at output of offline GPA
  - Without blooming filter (with GS GPA settings) (red)





## GLM L0/L2+ Events 2018-01-11 07:00 – 10:00 UTC



- GLM raw events at input to ground processing algorithm (blue)
- GLM lightning events at output of offline GPA
  - Without blooming filter (red)
  - With GLM-vendor blooming filter implemented offline (yellow)





### False Event Rate 2018-01-11 07:00 -10:00 UTC



 Executed offline GLM GPA event filters on solar glint period with (yellow) and without (orange) blooming filter for three-hour period

|                  | <b>Blooming Filter Status</b> |            |
|------------------|-------------------------------|------------|
|                  | OFF                           | ON         |
| Lightning Events | 22,440,003                    | 5,867,642  |
| False Events     | 12,081,709                    | 28,654,070 |
| Total Events     | 34,521,712                    | 34,521,712 |

- Without blooming filter, the number of false lightning events is the difference between the OFF and ON cases
  - False event rate (w/o BlmgF) = Lightning Events (OFF ON)/Lightning Events(OFF)

#### FER = 74 %

• Treating all lightning events outside of 3-hr glint period as true lightning, the 24-hr false event rate

#### FER(24-Hr) = 25 %

FER correlated as an upper-bound to False Alarm Rate
5% FAR is not met without blooming filter



### GLM L2+ Events 2018-02-26 04:35 – 06:00 UTC



- Executed Blooming Filter on GLM L0 events from solar intrusion period on 2018-02-26
- Significant reduction in lightning events
- Below maximum number of lightning events to enter LCFA (GLM L2+ algorithm)
- Good comparison of GS lightning events with offline processing without blooming filter

#### Reduces likelihood of data dropouts from solar glint and solar intrusion conditions





## GLM False Alarm Rate Summary and Path Forward



- Significant improvement to False Event Rate demonstrated with offline-GPA using the GLM-vendor blooming filter
  - FER reduction correlated with an upper-bound to False Alarm Rate reduction
  - Reduces data dropouts from solar glint and solar intrusion conditions
- Ground Segment scheduled implementation of blooming filter for data operations nominally in early 2019 (DO.08)
  - Implementation to occur before Full Validation PS-PVR
    - Peer Stakeholder Product Validation Review
  - CWG to test GLM data following GS blooming filter implementation for operational false alarm rate