Validation of lightning detection and classification beyond GLM

GLM Science Meeting 8-10 September 2020

Eric C. Bruning, Texas Tech University Kristin M. Calhoun, NOAA/OAR/National Severe Storms Laboratory Christopher J. Schultz, NASA/MSFC/SPoRT Timothy J. Lang, NASA/MSFC Vanna C. Chmielewski, University of Oklahoma/CIMMS/NSSL Scott D. Rudlosky, NOAA/NESDIS/STAR

Operational lightning detection then and now

- A new, multi-sensor, multi-physics era of lightning measurements means that our concept of lightning detection must evolve from an undifferentiated whole ("I saw a lightning strike") to one that correctly classifies components of the lightning discharge, reports their spatial extent, and ultimately relates the discharge to the three dimensional, time-evolving meteorological structure of thunderstorms.
- This challenging task has arisen time and again during GLM cal/val, and has also been raised by forecasters in the NWS total lightning working group who are trying to understand observed differences in reported stroke classifications.
- The old problem: what is the peak current and \bullet location of CG strokes?
- The new problem: how do we fit together mapping • and stroke detection instruments into a dataset that correctly classifies components of the lightning discharge, and reports their spatial extent?
 - Datasets give a conflicting picture right now. •
 - Because it's sensed and reported, operational • users wonder what it means, and complain!
- We have to take on this challenge if we want to relate lightning to the three-dimensional, time-evolving meteorological structure of thunderstorms.

1st Generation

Singular focus on CGs peak current and location

Specialization Shared knowledge among academic, federal, and industry scientists among academia, federal, and industry Instrument **Radio Band** Instrument 3-30 kHZ WWLLN 1 - 350 kHz NLDN (CG) NLDN (CG, IC) 1 Hz - 12 MHz ENI 60-66 MHz LMA (for reference) **Optical** Today **Channel path**

Electric field change waveform shapes and polarity information greatly aid validation Their study and those skills have become a speciality instead of a universal expectation of lightning scientists. It's time to bring that back.

hoto: Dr. Pat Skinner

Today

Diversification of measurements IC, CG strokes; channel mapping

CG

ICs

A proposal

The FiDeLiTy Initiative

Fiducial Detection of Lightning Types

• What?

- Within each LMA:
 - 12 field change sensors + pan tilt zoom optical cameras
 - Must operate continuously and be designed for automatic synthesis
- Open dataset as a shared resource for industry, federal, and academic scientists
 - Supports research, development, and assessment
- Why?
 - Our concept of lightning detection must evolve from an undifferentiated whole ("I saw a lightning strike") to one that correctly classifies components of the lightning discharge
 - Provides a geographically distributed capability for characterizing charge motions along any lightning flash in a small domain.
 - Consolidates lessons learned from GLM validation and NWS TLWG
 - Captures variability over GLM field of view, meteorological variability in lightning behavior (e.g., inverted and severe storms), rare events
- **How?** Proof of concept datasets:
 - RELAMPAGO CAMMA deployment
 - Camera system prototype at Pantex

Portable and fixed LMAs

COLMA, WTLMA, OKLMA, Langmuir HLMA, NALMA, NGLMA, DCLMA...

Electric field change (e.g., CAMMA; Zhu et al. 2020, doi:10.1029/2020EA001111) 2018-11-03T00-19-50-446 Number of active stations: 5&6 Preceding CAMMA 11 IC IBPs CG IBPs out by under the 800 1437 sources (d) 200 400 -15 -10

No. of sources

Pantex Optical Lightning Detection System Courtesy David Haatz

Classification problems

Misclassified inverted polarity intracloud flashes. Peak currents between -15 and -25 kA Meteorology \rightarrow unusual charge structure \rightarrow flashes that don't fit the historical model for –CGs Somewhat rare events, so have to monitor continuously to capture waveforms.

Polarity and Peak Current Uncertainty

7613 flashes. Well-correlated magnitudes (r²=0.93), except when it's not. RMSE=15 kA. Can we reduce this spread? Why are the polarities sometimes different? From Calhoun et al. (2020, OU senior capstone project)

We know how to do this; We don't do it systematically

Short validation campaigns and a few flashes Focus on single instruments and regions instead of synthesis

- Understanding how charge moves in the sky has, since the 1960s, relied on electric field change measurements.
 - Still deployed to do validation of classification and deep study of individual discharges
 - Time to revisit this work and make it \bullet routine.
- Newer VHF mapping systems provide essential context
 - We learned so much by making this measurement routine.
- Everyone has limited resources to do validation, from industry to academia
- A hard problem, but we have the instruments, computing power, and experience to push the science.

