A Multi-Case Analysis of GLM Detection Efficiency in Alabama, Colorado and West Texas

Adam W. Clayton, Steven A. Rutledge and Kyle Hilburn Colorado State University GLM Workshop
8 September 2020

Recent GLM Validation Studies

- Marchand et al. 2019
- GOES-16 GLM achieves spec DE (~70\%) in most locations except for High Plains
- Zhang and Cummings 2020
- GOES-16 GLM effectively detects long duration flashes with large flash areas
- Reduced detection of short duration flashes with small flash areas
- Brunner and Bitzer 2020
- Satellite detection of optical emissions varies greatly with location in thunderstorm
- Rutledge et al. 2020
- GOES-16 DE varies depending on thunderstorm microphysics, flash size, and flash height. Argued that reduced DE is caused by optical attenuation due to cloud ice particles and cloud droplets. DE lowest in so-called "inverted" storms

Methodology

- Only considered isolated convection within 100 km of LMA center
- CSU Lighting, Environment, Aerosols, and Radar (CLEAR)
- CLEAR was used to track isolated convection in each of the three regions
- $10 \mathrm{~km}^{2}$ threshold employed for 35 dbz contour
- $20 \mathrm{~km}^{2}$ threshold employed for 45 dbz contour
- Minimum 10 source threshold used for COLMA and WTLMA
- 5 source threshold for NALMA
- NLDN flashes < 15 kA were considered intra-cloud and removed from the CG count
- ABI data used to estimate cloud water/cloud ice path (CTWP); radar used to estimate precipitation ice water path (IWP); radar also used to estimate graupel and hail echo volumes

Case Date	Region		Time of Cell	Hail report	Wind report	Tornado report	Average DE(\%)
	20190715	CO	20:00-23:05 UTC	Yes	No	No	2.38
	20190712	CO	1900-2100 UTC	No	No	No	2.48
	20190701	CO	20:12-00:13 UTC	Yes	No	No	4.33
	20180729	CO	19-2230 UTC	Yes	Yes	Yes	4.81
	20190705	CO	02:56-04:14 UTC	Yes	No	No	5
	20190520	WT	20:29-22:21 UTC	Yes	Yes	No	5.14
	20190620	CO	20:37-23:22 UTC	No	No	No	5.55
	20190704	CO	01:43-03:26 UTC	Yes	No	No	5.72
	20190911	CO	22:08-00:08 UTC	Yes	No	No	7.02
	20190625	WT	1:09-02:57 UTC	No	No	No	7.69
	20180619	CO	18-2130 UTC	Yes	No	Yes	8.95
	20190523	WT	23:00-02:47 UTC	Yes	No	No	10.25
	20190526	CO	21:30-23:00 UTC	Yes	Yes	Yes	11.4
	20180807	CO	22:24-01:54 UTC	No	No	No	12
	20190608	CO	22:13-00:19 UTC	Yes	No	No	12.23
	20190524	WT	00:34-3:55 UTC	No	No	No	12.55
	20190525	WT	20:35-21:36 UTC	No	No	No	13.13
	20180618	CO	0-2:30 UTC	Yes	No	No	14.08
	20180605	WT	23:06-02:15 UTC	No	Yes	No	17.54
	20190614	WT	00:59-3:10 UTC	Yes	No	No	18.76
	20200524	AL	01:05-2:30 UTC	No	No	No	20.87
	20190505	WT	20:20-21:56 UTC	No	No	No	23
	20180517	WT	22:03-23:27 UTC	No	No	No	23.04
	20180520	WT	0220-0430 UTC	No	No	No	23.28
	20180601	WT	23:29-00:30 UTC	No	No	No	25.17
	20200408	AL	2140-2340 UTC	Yes	Yes	No	26.8
	20200523	AL	00:35-01:45 UTC	No	No	No	32.63
	20200603	AL	20:25-2150 UTC	No	No	No	34.93
	20200629	AL	17:35-18:15 UTC	No	No	No	35.88
	20200627	AL	22:50-23:50 UTC	No	No	No	43.69
	20190323	WT	00:31-04:57 UTC	Yes	No	No	46.21
	20190423	WT	01:15-2:10 UTC	No	No	No	46.36
	20200704	AL	17:50-19:02 UTC	No	No	No	49.2
	20200517	AL	19:40-21:10 UTC	No	No	No	59.03

Cases are ranked from lowest to highest average Detection Efficiency

There is a tendency for more of the low DE cases to be severe, mainly hail

Location of VHF sources are high and flash area is large

GLM DE mostly meets specs for this case

GLM flashes, groups, and events well correlated to LMA flash rate

Cloud top water path is very small implying negligible optical attenuation

Relatively low flash rate storm by Colorado standards

GLM DE is less than 10 percent for this storm

Flash area is very small $<10 \mathrm{~km}^{2}$

GLM correlated to LMA

GLM flash rate is an order of magnitude less than LMA flash rate

CTWP larger than in high DE Alabama case

Low DE caused by small (dim) flashes and attenuation due to appreciable CTWP

Low VHF source location and small flash areas = anomalous storm

DE is low for most of time series; DE increases with flash area (size)

Higher count of +CG flashes especially early in time series consistent with inverted storm

CTWP larger than the high DE Alabama case; role of optical attenuation again evident in explaining low DE

GOES-16 GLM DE vs LMA Flash Rate

COLMA Flash Rate vs GLM Flash Rate

WTLMA Flash Rate vs GLM Flash Rate

Orange line is the line of equal flashes for LMA and GLM

Largest discrepancy is in Colorado followed by West Texas and North Alabama

Conclusions

- Analyzed 34 isolated thunderstorms in Alabama, Colorado, and West Texas
- For a given flash area, the GLM DE varies greatly over the three regions
- Combination of low flash heights, small flash areas, cloud water path and GLM FOV act to reduce GLM DE
- Thunderstorms that produce severe hail are more likely to have a low DE
- Questions?

