

Predicting Severe Storms with ML and GLM

September 9, 2020

FDL 2020

Invidia (planet. 2ETI

- Al accelerator lab
- **SETI institute and NASA**
- 8 week research sprint
- **Unites Machine Learning Engineers with Domain Specialists**

EARTH SCIENCE

FDL 2020

B LUXEN AGENER ST. COMMANDER MATTIN / MIT Portugal (intel) IEM.

IVIDIA (planet. ?ETI

MAYO CLINIC

FRONTIER DEVELOPMENT LAB

PROBLEM: Can we use GLM observations and machine learning to improve predictions of severe thunderstorms?

MAYO CLINIC

60

SPACE AGENCY

MIT Portugal

₩USGS

APPROACH:

1. Time-series convolutional-kernel model using gridded GLM quantities.

Google Cloud

2. Recurrent spatial-temporal model using GLM and ABI (Channel 13)

SELI

planet.

(intel)

ROCKET

- RandOm Convolution KErnel Transform (Dempster et al. 2020)
- Fast Time Series Classification
- Convolutional kernel as a transform
 - Random length
 - Dilation
 - Padding
 - Bias
- Transformation input to classifier
- Single layer

(intel)

IRM

MIT Portugal

SELI

(planet.

Project Pikajoule

Using ROCKET, we create features from convolutions of GLM time series data and train a classifier to predict if a severe event occurred.

Data: Spring 2019, central plains

Null: Warning issued, but no severe event within 24 hours

Severe: Reported tornado or hail event.

Google Cloud

MAYO CLINIC

60

≊USGS

SELI

Results

State of the Art

(National Weather Service, Cintineo

IBM.

(intel)

Miss		Correct rejection	
	Hit	False alarm	
Critical Success Index (CSI)		False Ala	rm Ratio (FAR)
FDL	ier Gou	ogle Cloud	■USGS MAYO CLINIC

	Project Pikajoule	Service, Cintineo et al. 2018)
Lead time	15 min	> 15 min
Coverage	Central US (1,000 km x 800 km)	CONUS
Period	Mar-Jun 2019	May-Jul 2014, Mar-Dec 2016
CSI	0.49*	~0.35
FAR	0.41*	~0.55

*Mean of 100 trained models

SULEMBOURS S LOCKALLO MARTIN MIT Portugal

These results suggest we can enhance and refine this work to aid in forecasting severe events

Project Pikajoule

Work in progress: Predicting spatial probability maps of severe events using a convolutional neural network

Video Frame Prediction

- Encoder ConvGRU Decoder
 - Encoder feature extraction
 - ConvGRU temporal context
 - Decoder original image
- Examine 30min before and after severe event

Google Cloud

- Train 100 video segments
- Test 15

Predicted

EUXEMBOURG ST

MAYO CLINIC

6

≥USGS

Ground Truth

MIT Portugal

Prior (5min)

planet.

Frame Convolutional Neural Network using lightning observations, cloud-top temperatures, and severe weather reports

(intel)

NASA provides funding for the Frontier Development Lab (FDL) through a cooperative agreement with the SETI Institute.

FRONTIER Development Lab

Acknowledgements

Google Cloud

Aaron Piña Lika Guhathakurta Bill Diamond Chris Schultz Kris Bedka Daile Zhang Eric Bruning Yarin Gal

James Parr S Sara Jennings W Richard Strange S Belina Raffy S Jodie Hughes Lo Björn Lütjens R Massimo Mascaro Frank Soboczenski

≊USGS

Scott Penberthy Will Jones Shashi Jain Scott Rudlosky Louis Monier Ramesh Menon aro

SPACE AGENCY

MAYO

CLINIC

GP

Google Cloud

MAYO

GP

MIT Portugal

MIT Portugal

≥USGS

TEM

(intel)

LOCKHEED MARTIN

SELI

planet.

