

GLM Data Archival and Research Updates at the Global Hydrology Resource Center DAAC

Dr. Geoffrey Stano - GHRC DAAC Scientist

Dr. Michael Peterson - Los Alamos National Laboratory

The GLM Portal

- Built for GOES-R Post Launch Test (PLT) field campaign
- Complements formally published PLT datasets
- Contains lightning data not available to public
 - NLDN
 - ENTLN
- Major GHRC change Archive fully in the cloud
 - Will support greater data access from other locations
 - Particularly other cloud-repositories

Welcome to the GOES-R and GLM Cal/Val Portals!

The Geostationary Lightning Mapper (GLM) is a satellite-borne single channel, near-infrared optical transient detector on the NOAA Geostationary Operational Environmental Satellite – R Series.

GEM data are available at NOAA CLASS.

GOES data are also available from AWS and Google Cloud

Validation data from the GOES-R Post Launch Test Field Campaign are available from NASA's GHRC DAAC.

Data Supporting the GLM

- ISS LIS updates
 - Validated Version I available (June 2019) Near real-time and non-QC
 - Quality control for Version I data in progress
 - Validated Version 2 science code ready for Operation Acceptance Testing in the test environment
 - Viewtime correction for solar panels
 - Viewtime correction for I second dropout
 - Correction of short files (< 5 min)
 - Conversion to time in file name instead of orbit number
- NALMA updates
 - Working to transition tasks from New Mexico Tech
 - Ingest, processing, archive, and distribution
- RELAMPAGO updates
 - LMA data from the RELAMPAGO campaign
 - <u>http://dx.doi.org/10.5067/RELAMPAGO/LMA/DATA101</u>

New Data: GLM Level 2 Products

• 2019 GLM Science Meeting

- Question raised if GHRC could archive GLM L2 gridded products
- Spent spring 2020 discussing issue with NASA EOSDIS
- GHRC received go-ahead to archive and publish these data
- Main emphasis is the global, gridded GLM L2 products
 - Coordinate with NOAA and create procedure to accept data
 - Will currently work with prior data being re-processed
 - Work to archive in FY2021
 - Investigate sub-setting data recipes

• GLM Field Campaign Data

- Developed by Doug Mach recently approved for public release
- Beta level GLM validation data (11 GLM-focused flights)
- Superior accuracy compared to the originally available algorithm
- http://dx.doi.org/10.5067/GOESRPLT/GLM/DATA101

Hurricane Laura, 2010 UTC, 26 August 2020

New Data: GLM-CIERRA

- CIERRA Cluster Integrity, Exception Resolution and Reclustering Algorithm [Peterson 2019]
 - Built upon Peterson's earlier work with OTD and LIS
 - Utilizes the GLM's Lightning Cluster Filter Algorithm (LCFA)
 - Identifies where LCFA flags degraded flashes (exceeding real-time requirement thresholds)
 - Reconstructs a flash from multiple degraded flashes
 - Provides a clearer view of the extent and count in flashes
 - Accepted for archival at GHRC initially for 2018-2019: <u>http://dx.doi.org/10.5067/GLM/CIERRA/DATA101</u>
 - Developing plan for ongoing data production
- Developing option for LIS and OTD
 - Will also be archived at GHRC when ready

OTD Flash at 6/1/1996 14:50:50 UTC EXTENT: 267 km MERGED FLASHES: 5

OTD-CIERRA example (courtesy Michael Peterson)

Research: GLM Flash Analysis

- Collaboration with Michael Peterson at Los Alamos National Laboratory
- Use Peterson (2019) GLM-CIERRA product
- GLM-CIERRA offers opportunity to leverage GLM's tremendous field of view
- Investigate megaflashes
 - Defined at >= 100 km in extent
- Questions to ask:
 - Where and when do megaflashes occur?
 - How often do they occur?
 - Is there a level of predictability?
 - How can these answers impact lightning safety?

A single flash in South America that the Lightning Cluster Filter Algorithm split into 33 separate flashes.

Image courtesy of Dr. Michael Peterson

Early Results: GLM-CIERRA Flash Analysis

Flash extent density of flashes per day exceeding 100 km in 2018-2019 (left column) for the eastern two-thirds of the U.S. (top) and southeast South America (bottom). The right column shows the percentage of thunderstorm days with flashes exceeding 100 km.

Image courtesy of Dr. Michael Peterson

- GLM-CIERRA covers GOES-16 for 2018-2019
- 718 million flashes analyzed
 - Top 1% (7.1 million) are 45.8 km in extent or greater
 - 1,800 flashes exceed 300 km in extent
 - Averages to 2.5 flashes exceeding 300 km in extent per day
 - Previous WMO record of 321 km (Now 709 km)
 - October has the most with 319
 - July has the least with 16
 - (Needs further investigation for hemisphere differences)

THANK YOU!

QUESTIONS?

