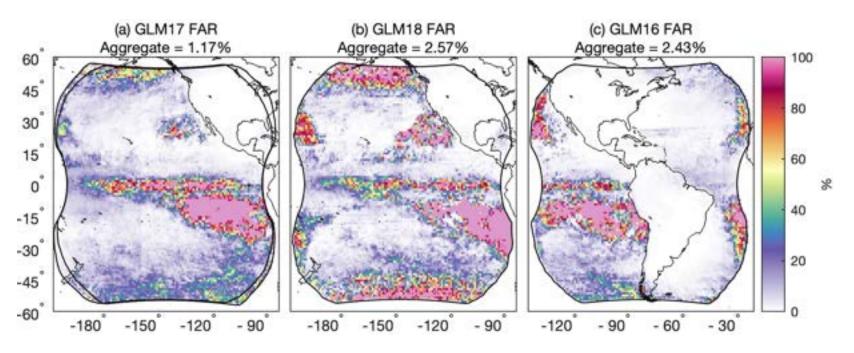
Bayesian Absolute Detection Efficiency of the GLMs

Katrina Virts University of Alabama in Huntsville (UAH)

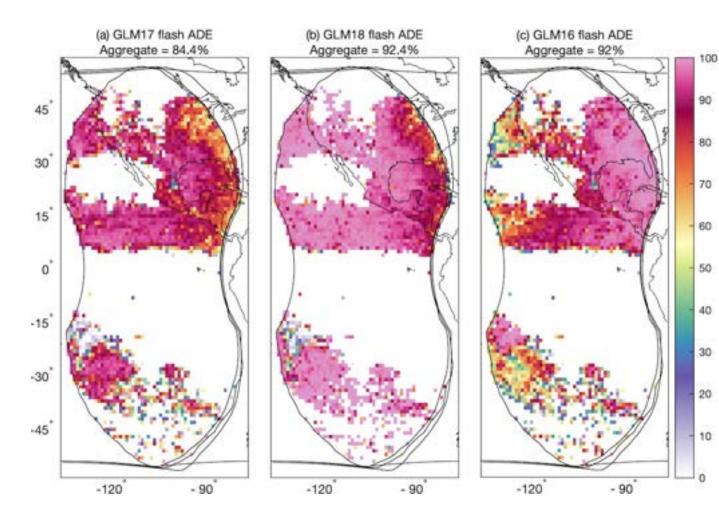

William Koshak National Aeronautics and Space Administration (NASA)

> GLM Science Team Meeting 13 November 2023

Calculating GLM's detection performance

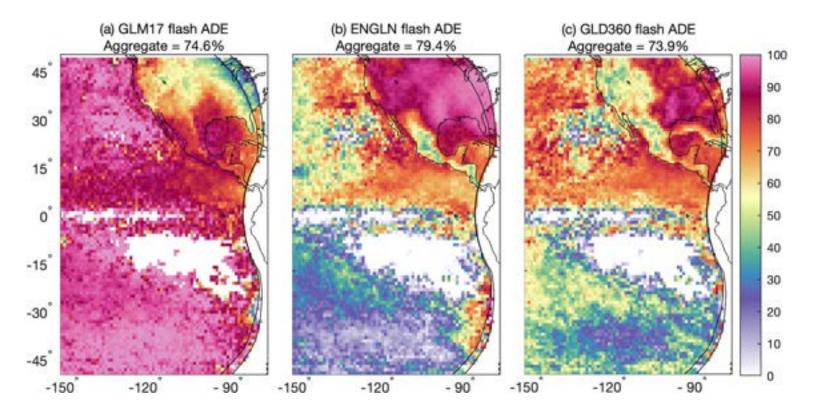
- Detection efficiency (DE) = % of true lightning flashes a sensor detects
- Most studies calculate relative DE
 - Probability that sensor A detects a discharge given that sensor B detected the same discharge
 - Assumes that the reference sensor (B) detects all lightning
- Bitzer et al. (2016) introduced a Bayesian method for absolute DE (ADE)
 - Does not assume that either sensor detects all lightning
 - Calculated with respect to the larger universe of detected lightning
 - Provides an upper estimate of ADE for each sensor being analyzed
- Bitzer and Burchfield (2016) applied the Bayesian method to ground network pulses/strokes: ENTLN (56.8% ADE), GLD360/NLDN (59.8%), and WWLLN (7.9%)
- Virts et al. (in review) applied the Bayesian method to TRMM and ISS LIS ground networks, and GLM16

Caveat: GLM artifacts

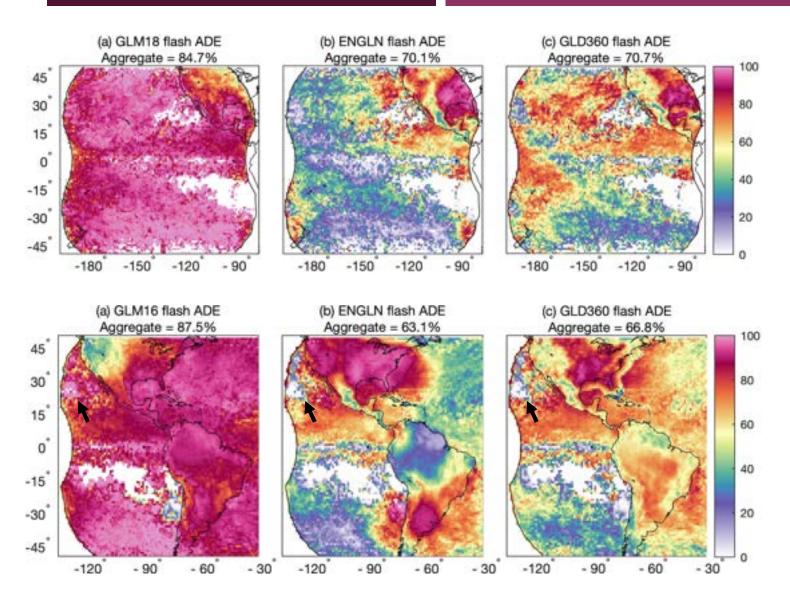

- False alarms are counted as missed flashes for other sensors
- ~1-3% of GLM reported flashes cannot be matched to *any* reference flash (within ±10 min, 50 km)
- FAR is higher when averaging over all grid boxes (e.g., weighting each location instead of each flash the same)

Lightning data available for Bayesian analysis

Source	Lightning data	Time period	Domain					
Satellite optical sensors								
GLM16		Aug 2019 – Jul 2023	Western Hemisphere					
GLM17	Flash	Aug 2019 – 10 Jan 2023	Central/Eastern Pacific					
GLM18		Nov 2022 – Jul 2023	Central/Eastern Pacific					
Ground-based RF networks								
ENGLN	Pulse -> flash	Aug 2019 – Jul 2023	Global					
GLD360	Stroke -> flash	Aug 2019 – Jul 2023	Western Hemisphere (through 2020) Extended Western Hemisphere (2021 and later)					


- Begin analysis after the blooming filter was implemented
- ENGLN and GLD360 stroke/pulse data clustered into flashes using Weighted Euclidean Distance (parameters ±330 ms and 5.5 km)
- Flash matching criteria: ±1 s and 50 km

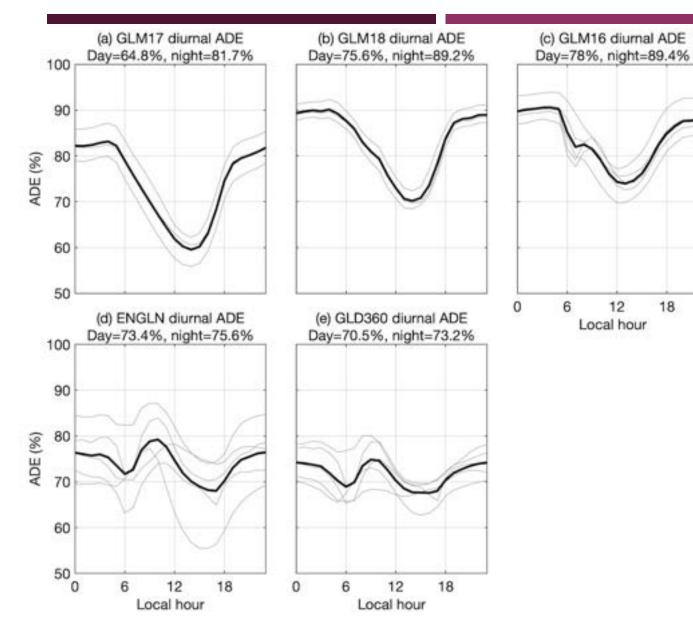
Three-GLM comparison


- Three-GLM comparison possible from 1 Nov 2022 – 10 Jan 2023
 - ~4.5-5.0 million flashes
- GLM16/18 aggregate ADE 92% over all flashes
 - GLM17 ADE was ~8% lower
- Lower ADE near FOV edges, western US (GLM16), and southern Pacific

GLM17 performance

- GLM17 aggregate ADE ~75% is comparable to the ground networks for this domain
- ENGLN has largest spatial ADE variations and performs best over CONUS
- GLD360 has fewer spatial variations than ENGLN and lower ADE for this domain
 - Artifact visible at the boundary between NLDN and GLD coverage

GLM18/16 performance


- GLM18/16 out-perform both reference networks (ADE=85-88%)
- GLM blooming artifacts produce locally low reference network ADE

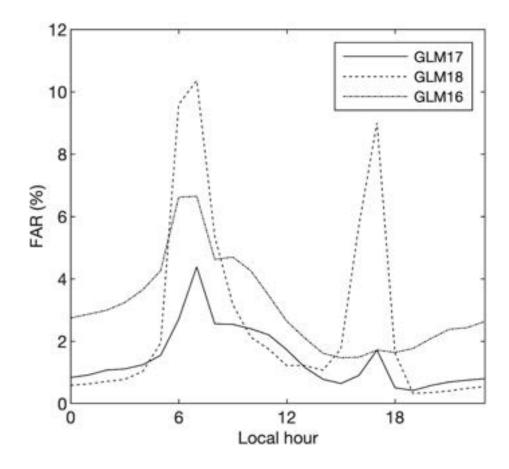
GLM flash ADE in the overlap region

GLM17		GLM18		GLM16	
Analyzed With	ADE	Analyzed With	ADE	Analyzed With	ADE
GLM16, ENGLN	68.7%	GLM16, ENGLN	80.6%	GLM17, ENGLN	79.5%
GLM16, GLD360	73.1%	GLM16, GLD360	82.3%	GLM17, GLD360	84.4%
GLM16, GLM18	84.8%	GLM16, GLM17	92.7%	GLM17, GLM18	92.3%
ENGLN, GLD360	74.4%	ENGLN, GLD360	84.1%	ENGLN, GLD360	84.8%
				GLM18, ENGLN	82.0%
				GLM18, GLD360	83.6%
Median	73.8%	Median	83.2%	Median	84.0%

GLM18 ADE is ~10% higher than GLM17, and similar to GLM16

Diurnal variability of GLM ADE

- Gray lines = hourly ADE from 3way comparisons involving at least one GLM and one ground network
- GLM16/18 ADE:
 - Remains above 70% throughout the diurnal cycle
 - Diurnal amplitude is ~11-14%
- GLM17 has larger diurnal amplitude and is as low as 60% during the afternoon
- Maxima in GLM false flashes around 06-07 and 16-17 LT create semi-diurnal cycle in reference network ADE


Conclusions

- GLM and reference network ADE largely follow expected geographical patterns
- GLM16/18 aggregate flash ADE is 83-84%
 - GLM17 flash ADE is 10% lower
 - Each GLM has ~100% ADE over some oceanic areas
- Diurnal amplitude of GLM16/18 ADE is 11-14%, minimizing ~13-14 LT
- GLM16/18 aggregate ADE is >70% throughout the diurnal cycle

Thank You!

Katrina Virts (katrina.virts@uah.edu)

Diurnal variability of GLM false alarms

- GLM false alarms spike around 06-07 and 16-17 LT due to solar intrusion and blooming
- These artifacts artificially decrease the ground network ADE