

Development of a forward operator for lightning data assimilation

Federico Cutraro, María Eugenia Dillon and Juan Ruiz

GLM Science Meeting 2023

Data Assimilation System (experimental 2023)

SAP.SMN-ANA: current implementation at the NMS

Data source	Assimilated variable
Conventional SWS	PSFC, T, U, V, RH
Automatic SWS (private +AWOS)	PSFC, T, U, V, RH
Ships, buoys	SLP, T, U, V, RH
Soundings	T, U, V, RH
Aircraft (AMDAR, AA)	T, U, V
Aqua (AIRS)	T, Q
Metop-B (ASCAT)	U, V
GOES-16	U, V
C-band Radar	Z

4D-LETKF method coupled with the WRF model (10-min slots) (fortran implementation from Miyoshi T., Ruiz J.)

- Hourly analysis with
 4 km horizontal
 resolution.
- 40 multi-physics ensemble members.
- 18 cycles real-time implementation.

www.smn.gob.ar

Lightning data assimilation

Motivation

GLM data will complement mesoscale observations particularly in those areas not covered by weather radar.

Challenges

- Have a good forward operator.
- Include lightning observations in the data assimilation workflow (code writing, tune observation errors, etc).
- Evaluate the impact of these new observations.

Forward operator

- Explicit solve of electrification process is too expensive.
- Statistical approach:
 - Empirical regressions using model state variables as predictors: Ο

 - Maximum vertical velocity (W_{max}). Vertically integrated ice content(ICE_INT).
 - Graupel flux at -15°C isotherm (WQ_{a}).
 - Combination of ICE_INT and WQ_g (McCaul et al. 2009).
 - Lightning Potential Index (LPI).
- Machine learning approach:
 - CNN with forecasted radar reflectivity as input. Ο

Statistical approach

- More than 3000 forecast hours from 4 km deterministic and ensemble forecasts from operational SAP.SMN (<u>Matsudo et al.</u> <u>2022</u>), from november 2022 to march 2023.
- Observations of Flash Extent Density (FED¹) for the same time as forecasts.
- PDF matching to transform forecasted variables distribution into the observed distribution.

¹Calculated using glmtools (Bruning et al. 2019)

Statistical approach Training

• Relationships grouped by microphysics scheme.

Ministerio de Defensa

Argentina

Statistical approach Prediction

Argentina

• • • • • •

Machine learning approach Architecture

- Convolutional Neural Network with a U-Net architecture to transform observed radar reflectivity into FED observations.
- Six partial column maximum reflectivity as input.

• Forecasted reflectivity into forecasted FED.

inisterio de Defensa

www.smn.gob.ar f ⊻ © ⇔ ⊡ ≪

Machine learning approach Training

- 2 years of quality controlled data from 4 different radars for training (30000 cases).
- Hyperparameters:
 - Contraction/expansion layers: 2
 - Filters: 12

inisterio de Defensa

Argentina

- Batch size: 64
- Learning rate: 1x10⁻⁵
- Activation function: ReLU
- Loss function: MSE

¥ @ @ **p**

Machine learning approach Prediction

Argentina

1983/2023 - 40 años de democracia

f y 🛛 🖻 🗖 🖉

Conclusions and future work

- Lightning prediction with the statistical approach shows good results but has some cons.
- Machine learning approach shows promising results but is still an ongoing work.
- 2023/4 summer will be use to determine the best approach to employ in the context of data assimilation.

Thank you for your attention

SMN Argentina

Ministerio de Defensa Argentina

fcutraro@smn.gob.ar

Dorrego 4019 (C1425GBE) Buenos Aires . Argentina Tel: (+54 11) 5167-6767. smn@smn.gob.ar

www.smn.gob.ar

f У 🖸 🖻 🛛

1983/2023 - 40 años de democracia