Flash Frequency Parameterization Insights from the Geostationary Lightning Mapper

Jonathan Wynn Smith, Ph.D. jonathan.smith@noaa.gov NOAA/OAR/Geophysical Fluid Dynamics Laboratory (GFDL) and UMD/ESSIC (Visiting Scientist Appt.) Collaborators: Larry Horowitz, Ph.D., Vaishali Naik, Ph.D, John Dunne, Ph.D. NOAA/OAR/GFDL

2023 GLM Science Team Meeting Operational Uses of GLM Part 2 Tuesday, November 14, 2023

<u>Goals</u>

Compare various lightning frequency parameterizations using reanalysis/observational variables to GLM flash frequency observations.

The most correlated parameterizations can be used in model development of lightning parameterizations in GFDL's Atmospheric Models.

The lightning frequency parameterization model development is a prerequisite to examining development of LNO_x, and tropospheric ozone and methane estimates within the model. MERRA2 Reanalysis 3D Flux of Ice Convective Precipitation at ~ 450 <u>hPa</u>

Precipitating ice particles in convection

Likely to go through collisions to trigger lightning

kg/m² s¹

Slightly different than upward ice flux in Finney et al. (2014) which includes non-precipitating ice

CAPE x Total Precipitation (TP)

Romps et al. (2014 and 2018)

CAPE represents instability, vertical, and charge separation

Precipitation rate eludes to areal coverage

CAPE x TP has been normalized by a single multiplicative factor (7.8 x 10^{-12} J^{-1}) to convert from units of W/m² to units of $1/\text{m}^2 \text{ s}^1$.

Works best for parameterizing CG flashes

Cheng et al. (2021)

- There will be minimal lightning activity where there is CAPE ≤ 225 J/kg
- "The storm size required to produce lightning appears to be disproportionately high in low CAPE environments (≤ 225 J/kg)"

Geostationary Lightning Mapper

Instrument	A near-infrared, optical sensor on both the NOAA GOES-16 (G16) and -17 (G17) satellites that continuously detects light perturbations and their duration and energy every 2 ms.		
Instrument Spatial Resolution	2 km ² curvilinear grid		
Instrument Field of View (FOV)	~ 145°W - 18°W/±54° latitude		
Product	Flash locations		
Processed Data Resolution	Binned to 2 km ² grid cells per minute		
Literature Reference	Rudlosky et al. 2019		
G16/-17 Analysis Time Period	Jan. 2018 - Dec. 2020 Dec. 2018 - Dec. 2020		
Data Regridding Method	Conservative		
Detection Efficiency (DE)	0.8 (Assumed across entire domain)		
Calculation of flash frequency (ff)	Conversion to flash frequency (flashes km ² s ⁻¹) with latitude weighting		

2 km² G16 GLM Jan. 2018 - Dec. 2020 Flash frequency in flashes/km²/month

2 km² G17 GLM Dec. 2018 - Dec. 2020 Flash frequency

G16/17 GLM Overlap Region

Blue - Best observed by G16 Yellow/red - Best observed by G17 Figure 2c from Rudlosky and Virts (2021)

Correlations GOES-16/-17 GLM FF vs

MERRA2 3D Flux of Ice Convective Precipitation at 450 hPa

Location	Annual	DJF	MAM	JJA	SON
GOES-16 GLM Land	0.59	0.46	0.05	0.67	0.35
GOES-16 GLM Ocean	0.65	0.08	0.38	0.69	0.36
GOES-16 GLM Overall	0.71	0.59	0.19	0.69	0.52
GOES-17 GLM Land	0.60	0.54	-0.05	0.61	0.81
GOES-17 GLM Ocean	0.21	0.09	0.22	0.32	0.35
GOES-17 GLM Overall	0.35	0.10	0.18	0.58	0.52

GLM	CAPE ≤225 J/kg = 0 J/kg	Total Precipitation	Location	Annual	DJF	МАМ	JJA	SON
GOES-16	ERA5 CAPE	ERA5 MTPR	Land	0.48	0.32	-0.02	0.58	0.24
GOES-16	ERA5 CAPE	ERA5 MTPR	Ocean	0.62	0.10	0.48	0.59	0.31
GOES-16	ERA5 CAPE	ERA5 MTPR	Overall	0.61	0.45	0.14	0.55	0.24
GOES-16	ERA5 CAPE	IMERG PR	Land	0.59	0.58	0.05	0.72	0.39
GOES-16	ERA5 CAPE	IMERG PR	Ocean	0.75	0.15	0.53	0.79	0.40
GOES-16	ERA5 CAPE	IMERG PR	Overall	0.69	0.67	0.22	0.69	0.42
GOES-17	ERA5 CAPE	ERA5 MTPR	Land	0.20	0.14	0.28	0.20	0.43
GOES-17	ERA5 CAPE	ERA5 MTPR	Ocean	0.22	0.10	0.25	0.37	0.30
GOES-17	ERA5 CAPE	ERA5 MTPR	Overall	0.11	0.13	0.30	0.10	0.15
GOES-17	ERA5 CAPE	IMERG PR	Land	0.12	0.20	0.35	0.14	0.32
GOES-17	ERA5 CAPE	IMERG PR	Ocean	0.23	0.10	0.29	0.40	0.34
GOES-17	ERA5 CAPE	IMERG PR	Overall	0.11	0.14	0.34	0.10	0.16

Mean January 2018 - December 2020

- 1.00 × 10⁻³ -5.00×10^{-4} -1.00×10^{-4} -5.00×10^{-5} -1.00×10^{-5} -5.00×10^{-6} -2.50×10^{-6} -2.00×10^{-6} - 1.88 × 10⁻⁶ - 1.75 × 10⁻⁶ - 1.50 × 10⁻⁶ - 1.25 × 10⁻⁶ -1.00×10^{-6} -5.00×10^{-7} -1.00×10^{-7} -5.00×10^{-8} -1.00×10^{-8} -1.00×10^{-9} -1.00×10^{-10} -1.00×10^{-14}

Observation and Parameterization Summary

MERRA2 3D Flux of Ice Convective Precipitation at ~ 450 hPa

Correlations near 0.59-0.71 annually and JJA over land, ocean, and overall for DJF

G17 GLM strongly correlated over land: 0.81 which is evident spatially

The scheme overpredicts lightning by 1-2 OOM over Central America, Northern S. America, and the Central Pacific Ocean

ERA5 CAPE x ERA5 TP and ERA5 CAPE x IMERG P

0.1 - 0.3 rise in correlation when using IMERG P as opposed to ERA5

For example, over G16 GLM ocean 0.54 to 0.77

Removing the low CAPE regime renders a slight increase in the correlations but less lightning parameterized spatially

Poor overall G17 GLM and CAPE x P correlations

What methods should we employ to remove the anomalous values for cloud ice fraction scheme?

 Masking grids with high values with percentile values Lower these percentiles until anomalous values are masked out

1) Remove the intermittent specific files that contain the anomalous values

References

Cheng, W.-Y., D. Kim, & R. H. Holzworth, (2021) CAPE threshold for lightning over the tropical ocean. *Journal of Geophysical Research: Atmospheres*, **126**, e2021JD035621. <u>https://doi.org/10.1029/2021JD035621</u>

Finney, D. L., R. M. Doherty, O. Wild, H. Huntrieser, H. C. Pumphrey, and A. M. Blyth, (2014) Using cloud ice flux to parametrise large-scale lightning. *Atmos. Chem. Phys.*, **14**, 12665–12682, www.atmos-chemphys.net/14/12665/2014/doi:10.5194/acp-14-12665-2014

Han, Y., H. Luo, Y. Wu *et al.*, (2021) Cloud ice fraction governs lightning rate at a global scale. *Commun Earth Environ.*, **2**, 157. https://doi.org/10.1038/s43247-021-00233-4

Romps, D. M. *et al.*, (2014) Projected increase in lightning strikes in the United States due to global warming. *Science.* **346**,851-854.DOI:10.1126/science.1259100

Romps, D. M., Charn, A. B., Holzworth, R. H., Lawrence, W. E., Molinari, J., & Vollaro, D., (2018) CAPE times P explains lightning over land but not the land-ocean contrast. *Geophysical Research Letters*, **45**, 12,623–12,630. https://doi.org/10.1029/2018GL080267

Rudlosky, S. D., S. J. Goodman, K. S. Virts, and E. C. Bruning, (2019) Initial Geostationary Lightning Mapper observations. *Geophys. Res. Lett.*, **46**, 1097–1104, https://doi.org/10.1029/2018GL081052

Rudlosky, S. D., and K. S. Virts, (2021) Dual Geostationary Lightning Mapper Observations. *Mon. Wea. Rev.*, **149**, 979–998, <u>https://doi.org/10.1175/MWR-D-20-0242.1</u>