Science and Technology Institute

The Impact of Single Group Flashes on the GLM Detection Efficiency and False Alarm Rate

Douglas Mach, USRA/STI

2023 GLM Science Meeting 13-15 November, 2023

Introduction

- The filter to remove all Single Group Flashes (SGFs) was introduced 28 November 2017
 - Implemented to remove spurious nonlightning detections by the GLMs that tend to be single isolated pulses
 - These spurious non-lightning detections increase the instrument False Alarm Rate (FAR)
 - Various efforts (e.g., Cummings, 2021; Peterson et al., 2021; Thomas, 2019) indicate that at least some of these SGFs are real flashes
 - Removal of these flashes can negatively impact the flash Detection Efficiency (DE) calculation measurements.

1

Determine What Fraction of SGFs Are Noise/Lightning

- There is a significant region where the 10,000two GLMs overlap
- Flashes detected by BOTH GLMs are very likely to be "real"
- GLM data
 - 72 hours of GLM16 and GLM17 Level 1b events
 - 16-18 March 2021
 - Clustered into groups and flashes
 - No SGF filter
 - No child count limit
 - No flash temporal limit
 - Data limited to overlap region

Flash Counts per 50km x 50km Grid Point

```
2
```

Overlap Region Dataset

- GLM data in the overlap region during the study period
 - 740,248 GLM16 flashes (total) (D)
 - 623,084 GLM17 flashes (total) (A)
 - 661699 GLM16 Multi-Group Flashes (MGFs) (C)
 - 520407 GLM17 MGFs
 (B)
- Find common flashes between GLM16 and GLM17 in the overlap region


```
3
```

Coincident Dataset

	Flashes in Overlap Region		Coincident Flashes	
	All	No SGFs (Operational Algorithm)	All	SGFs
GLM16	740248	661699	558490	21272 (4%)
GLM17	623084	520407	586423	77969 (13%)

11/14/2023

4

Non-Coincident Dataset

	Flashes in Overlap Region		Non-Coincident Flashes		
	All	No SGFs (operational algorithm)	All	MGFs	
GLM16	740248	661699	181758	125582 (69%)	
GLM17	623084	520407	36661	11953 (33%)	

GLM16 Non-Coincident 60° N 10,000 50 N 40° N 30[°] N 3,000 20 N 10[°] N 0 1.000 10[°] S Grid I 20° S 50 km (30[°] S 300 40° S 50 km 50° S Counts Per All Flashe No SGFs Single Group Flashes 100 50° N Flash 40° N 30° N 30 20[°] N 10 N 10 10° S 20° S 30° S 40° S 50° S No SGEs All Flashes Single Group Flashes 60° S 120[°] W 90[°] W 120° W 90° W 120° W 90[°] W GLM17 Non-Coincident

5

m

×

Observations

- The coincident data (more or less) matches the MGF dataset
- MGFs dominate the data
- The SGF filter does a decent job in eliminating "noise" flashes
- There are a significant number of SGFs (4-13%) that are coincident between GLM16 and GLM17
- There are a number of MGFs that are not coincident between the two GLMs
- The "real" SGFs tend to cluster with the MGFs

STI


```
6
```

Current Work Goal

 We need to find a way to reintroduce the "real" SGFs without including the "noise" SGFs

- Change Single Group Flash Filter to a Single Event Flash Filter?
 - $\circ\,$ The Single Event Flash (SEF) distribution is not very different than the distribution of SGFs
 - A more sophisticated algorithm to separate "noise"
 SGFs from "real" SGFs is needed

Innocence by Association Filter

- The "hint" is in one of the observations: • 'The "real" SGFs tend to cluster with the MGFs
- Develop a filter that keeps the SGFs that are "close" to the MGFs and remove those that are "not close"
- Filter Progress...
 - Temporal and spatial definitions of "close" are currently being explored
 - \circ Comparing results to GLD360 and ENTLN data
 - $\,\circ\,$ Maximize DE gain while minimizing the impact of the added SGFs on the FAR
 - $\circ\,$ Results should be part of the GLM reprocessing task algorithm

Questions?

Determining Coincidence

- To determine if flash detections from GLM16 and GLM17 are from the same flash, we need to set temporal and spatial rules and limits for coincidence
 - Use the time gaps between flashes to determine flash coincidence
 - Take the minimum distance from any two events in the flashes
 - \circ Spatial limit = 20 km
 - Temporal limit = 0.5 s

