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Motivation

* Recover temporal features from
temporally varying optical signals
from space

* The atmosphere attenuates and
temporally smears signals —

 Time of Flight (TOF)

 Monte-Carlo modeling can
simulate TOF.

Factors considered today:
1) Cloud phase function
2) Cloud scene voxel resolution
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Prior Knowledge

e Limited cloud TOF simulation literature
 E.g. Heidinger and Stephens (2002) [1]

e Monte-Carlo model of sun-reflected
photons
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* @Given constant optical depth:

e 28m voxel size: shorter TOF than slab; T
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tu n e d St ra Ig ht b a C k ’ iTh". -“ 28m Optical Path Length (o< # of scatt events)
0.4 .—H ——Slab Path length (Geo == Opt.)
. . m j
« Despite a shorter TOF, in 28m voxel 2

simulations, photons had on average 4x
more scattering events compared to a
homogeneous cloud.
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[1] Heidinger, A.K. and Stephens, G.L., 2002. Molecular line absorption in a scattering atmosphere. Part Ill: Pathlength
characteristics and effects of spatially heterogeneous clouds. Journal of the atmospheric sciences, 59(10), pp.1641-1654.

o simulation domain.



Radiative Transfer Testbed

* Physically Based Rendering Toolkit
(PBRT) [2]

Open-source ray tracing render
engine, actively maintained
Minor augmentations needed
v" Recover TOF

v' User-specified phase functions
 Nested participating media

[2] Pharr, M., Jakob, W. and Humphreys, G., 2023. Physically based rendering: From
theory to implementation. MIT Press.



5
PBRT Phase Functions m

=0.877 ‘Industry standard’ for visible

OPAC Maritime Cumulus, \=550nm
Henyey-Greenstein, g=0.877

* PBRT upgraded from only Henyey- 10t
Greenstein (HG) phase functions.

* Optical theory (Mie + geometric) accounts &

for material and morphology-specific 102
interactions at cost of (pre)computation.
HG fitted to these. bl
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scattering angle 6, degrees

* Open-source library: OPAC [3]

Henyey-Greenstein OPAC Marine Cumulus

[3] Hess, M., Koepke, P. and Schult, 1., 1998. Optical properties of aerosols and clouds:
The software package OPAC. Bulletin of the American meteorological society, 79(5), pp.831-844.
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Scene setup 0: zenith angle

* Photons sent isotropically from source
on ground to space

Look
Angle Bin
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* Tallied once photons exit atmosphere
at 80km as function of zenith “look”
angle 8 and azimuth ¢, in 2° X 2° bins.

* Bins act as large “Cameras” tallying
photons. Azimuth ¢

]
10km |

* PBRT currently only handles one
participating medium at a time:
today, clouds only.

 Cloud model: 3DCloud marine
stratocumulus [4]

Nadir image
(false color) ]

[4] Szczap, F., Gour, Y., Fauchez, T., Cornet, C., Faure, T., Jourdan, O.,
Penide, G. and Dubuisson, P., 2014. A flexible three-dimensional
stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on
drastically simplified atmospheric equations and the Fourier transform

framework. Geoscientific Model Development, 7(4), pp.1779-1801. I




Phase Function Impact on Photon Transport




Phase Function

How does cloud phase function impact transmission and
time of flight?

Simulation conditions for PBRT: full-resolution (50m
voxel size) and slab 3DCloud+OPAC Marine
stratocumulus.

Below: Simulated nadir imagery of scene in question,
50m voxel size.

Henyey-
(Qreenstein

All quantitative
results today:
Zenith angle

6= 30°




Phase Function Transmission m

* Transmission varies with azimuth: lensing
* ¢ = 309° 335° chosen for high transmission s

OPAC Maritime Cumulus, A\=550nm
Henyey-Greenstein, g=0.877

- -
o o
o N
a0 | T B e
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* Transmission varies moderately with phase pebli
. " 7, . R 0 20 40 60 80 100 120 140 160 180
function, may be “okay” depending on desired scattering angle 0, degrees

requirements (most drastic at 60 degrees here)

Simulated nadir
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OPAC Maritime Cumulus, A\=550nm
Henyey-Greenstein, g=0.877

* Mean TOF enhancement over the direct path i
(Dispersion) 4 to 6 times higher! oy
* Speculation: higher backscattering probability 10

* Qutcome: Avoid Henyey-Greenstein PR
for through-atmosphere TOF if better phase T g angle 0 degreas 1

functions are available

Phase Function TOF ml

Simulated nadir
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Cloud Voxel Size Impact on Photon Transport




Voxel Size

e Simulation conditions for PBRT:

e 3DCloud+OPAC Marine stratocumulus cloud,
1. Full resolution (50m Voxel Size)

2. Trilinearly downscaled cloud optical density field:
. 100m, 200m, 400m, 800m, 1600m, 3200m voxel

3. Slab cloud (100,000m “single voxel”)

*

10km

50m voxel
s1ze
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Voxel Size Transmission

* Transmission was smoothened by
coarsening the grid.

* lensing effect reduced

* Inversely, refining the grid led to
variation in transmission.
* Since simulation is not independent
to voxel size at finest grid spacings,

mesh independence not
guaranteed here.

* Optical mean free path: 20m

* Refining the grid would require finer
3DCloud simulations
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Voxel Size TOF

Histogram of mean TOF
enhancement (dispersion)

Mean TOF enhancement
decreases as voxel size is
coarsened

On average, scattered
photons took longer path
lengths with finer grid
resolution simulations
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‘ 50m Voxel Size ‘
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Histogram of mean dispersion (us)
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Scene Caveats

Explored here: cloud voxel size. Not explored here: Cloud extent.

Larger extent = longer (but less likely) path lengths may be predicted
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Scene Caveats m

* PBRT can handle arbitrary participating
media extents

 Albeit PBRT V4 is memory-bound on a

lllllllllllllll | T 50 6

140

single node as it does not run 120 |
distributed. - to!
L
e Suggestion to handle fine voxel size and E L E
large extent with existing data: g2 F
1. Run weather-system scale model (WRF, - % ‘:'_
Weather Cube [5], etc.) ©
2. Run cloud-scale generator (e.g. 20 [~ |
3DCloud) to generate local cloud , B R [ e ,(T),
structures using weather-system-scale 0 B 0 O s O
thermodynamic properties
3. Quilt Cloud structures on weather-scale WRF simulation, color

~ cloud optical depth

[5] Schmidt, J.E., Burley, J.L., Elmore, B.J., Fiorino, S.T., Keefer, K.J. and Van Zandt,
N.R., 2018. 4D Weather Cubes and defense applications. In Defense Innovation
Handbook (pp. 257-279). CRC Press.
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Conclusions

A simulation platform has been built to quantitatively predict photon
transmission and time-of-flight.

The common Henyey-Greenstein model is not recommended for TOF
measurement, if other data is readily available.

Cloud scenes with finer voxel sizes on average lead to higher mean TOF
from ground to space.

The variance of mean TOF increases with finer voxel size.

The limit at which continued voxel refinement no longer leads to
change in statistics was not reached.

 Limitis speculated to be the optical mean free path.
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